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Rules!

Very very brief overview of the topic.

There is no such thing as a stupid question; Stop me whenever you have any Question!
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Preliminaries

Human Decision Making System

Interpret rich sensory inputs,

Uses brain to choose action through utilizing memory through a complex procedures.
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Preliminaries

What is Reinforcement Learning

Reinforcement Learning (RL) is a branch of Machine Learning (ML) concerned with decision
making,

“Learning to make decisions based on trial and errors”. (David Silver)

Can be formalized as a Markov Decision Process (MDP).
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Preliminaries

Connection to Other Fields

Computer Science: Designing tools and Algorithms,
Engineering: Optimal control in a sequential decision making problem,
Mathematics: The maths of optimal control, mainly in operations research,
Economics: Decision making in human-involved processes or tasks,
Neuroscience: Discovering how the human/animal brain makes decisions.
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Preliminaries

Supervised/Semi-Supervised/Unsupervised Learning vs RL

Supervised learning:
There are label for each observation, e.g., image classification, natural language
processing, etc.,
Not a sequential decision making problem.

Semi-Supervised learning:
There are labeled data, some unlabeled data,
Not sequential.

Unsupervised learning:
No label is available,
Goal is to find some pattern, clustering data, etc.

RL training:
Sequential decision making,
Actions affect the future,
No label.
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Preliminaries

Supervised Example
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Preliminaries

DRL Example
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Preliminaries

Current Applications of DRL

So popular in Games!,

Vastly used in Robotics,

Autonomous driving,

Ad recommendation,

Combinatorial problems,
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https://www.youtube.com/watch?v=V1eYniJ0Rnk


Preliminaries

DRL for Autonomous Driving Examples

Single-lane ring (0 AVs, 22 human-driven vehicles)

Single-lane ring (1 AV, 21 human-driven vehicles)

Single Junction Loop (0 AVs, 14 human-driven vehicles)

Single Junction Loop (1 AVs, 13 human-driven vehicles)

Single Junction Loop (14 AVs, 0 human-driven vehicles)
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https://www.youtube.com/watch?v=Lggtw9AOH0A
https://www.youtube.com/watch?v=D0lNWWK3s9s
https://www.youtube.com/watch?v=Z6QltFAEDeQ
https://www.youtube.com/watch?v=SoA_7fPJEG8
https://www.youtube.com/watch?v=5R6GWarVh2o


Reinforcement Learning

Markov Decision Process

Consider process:

𝐴𝑔𝑒𝑛𝑡

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝑎𝑡

𝑟𝑡+1

𝑠𝑡+1

𝑟𝑡

𝑠𝑡

𝑡 = 𝑡 + 1

State st P S
Action at P Apstq
Reward rtpused interchangeably ratpst, st�1q and rpst, atqq P R
Next state st�1 P S
(I use s, s‘ interchangeably for state and next state.)

Assume an initial state distribution p1ps1q.
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Reinforcement Learning

Markov Decision Process

Transition probability matrix Paps, s‘q � Prpst�1 � s‘ | st � s, at � aq

Reward matrix Raps, s‘q.

The agent follows policy πt to take action at � πtpstq.

This process is a Markov Decision Process (MDP) if:
A stationary transition distribution with conditional probability ppst�1|st, atq satisfies
the Markov property, i.e.,

ppst�1|s1, a1, . . . , st, atq � ppst�1|st, atq

for any trajectory
τ1:T � s1, a1, r1, . . . , sT , aT , rT

over S �A� R, such that rt : S �A Ñ R.
The state is fully known for the agent in each time-step.
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Reinforcement Learning

Goal

The goal is to maximize the expected discounted sum of the rewards rt, when the systems
runs for an infinite horizon:

r0 � γr1 � γ2r2 � . . .

and we define Rγt accordingly:

Rγt �
8̧

i�t

γi�trpsi, aiqp0   γ   1q

So, need to find policy π : S Ñ A that maximizes E
�°8

t�0 γ
tratpst, st�1q

�
.

Given the policy with parameters θ, the goal can be written as:

Jpπθq � E rR1|πθs

.
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Reinforcement Learning

Bellman Equation

Consider Value of each state as: V πpsq � E rRγ1 |S1 � s;πs

The Bellman Equation through an iterative process obtains the value of each state:

V πpsq � rps, πpsqq � γ
¸
s‘

pps‘|s, πpsqqV πps‘q

Then, the optimal policy can be obtained:

V π�psq � max
a

#
rps, aq � γ

¸
s‘

pps‘|s, aqV π�ps‘q

+

Issues:
Need the knowledge of Transition probability matrix Paps, s‘q and the Reward matrix
Raps, s‘q.
Curse of dimensionality.
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Reinforcement Learning

Other Approaches

Two approaches are common in practice to get a policy:

Value iteration:
Learns value of each state or the value of each action for each state.
Value function: the expected sum of discounted rewards,

V πpsq � E rRγ1 |S1 � s;πs

Q-value:
Qps, aq � E rRγ1 |S1 � a,A1 � a;πs

Policy Iteration:
Learns a stochastic policy πθ : S Ñ PpAq maps any state s P S into PpAq which
measures the probability of taking each action a P A, and θ determines the policy based
on the state input.
Basically, πθpat|stq provides the conditional probability of taking action at given st and
Rγt �

°8
i�t γ

i�trpsi, aiq (0   γ   1).
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Reinforcement Learning

Approximated Solutions

Classical value/policy iteration guarantee the optimality.

Again the curse of dimensionality.

Approximating the value or policy by value function or policy.

Linear approximator:
Proof of convergence to the local optimal.
Not powerful enough.

Non-linear approximator:
There is no proof of convergence.
Usually powerful enough.

Same status until recently,

Emergence of deep learning an cheap computational power!
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Reinforcement Learning
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Reinforcement Learning
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Deep Q-Network

Deep Q-Network

Train a neural network with the Q-values for each action in the output.

Utilizes the experience replay buffer to achieve i.i.d samples.
Since the selected mini-batch involves samples from previous episodes, DQN is a
off-policy algorithm.

Introduced the target network to stabilize the training.

Uses ε-greedy algorithm for the exploration.

Achieved human level control on most of 49 Atari-2600 games.
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Deep Q-Network

Deep Q-Network at a Glance

Maximizes value:

𝑄 𝑠𝑡, 𝑎𝑡 = σ𝑖=0
∞ 𝛾𝑖𝑟𝑠,𝑎

𝑡+𝑖

𝑄 𝑠𝑡, 𝑎𝑡 ≈ 𝐺 𝑠𝑡, 𝑎𝑡

𝑎𝑡= 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦(𝑄)

𝑠𝑡

𝑟𝑡

𝑠𝑡+1

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
Label: y = 𝑟𝑡 +max

𝑎
𝑄 𝑠𝑡+1, 𝑎

𝐿𝑜𝑠𝑠: y − 𝑄 𝑠𝑡 , 𝑎𝑡
2

𝐴𝑔𝑒𝑛𝑡

Trainer

𝑇𝑟𝑎𝑖𝑛

𝑡 = 𝑡 + 1

=
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Deep Q-Network

Deep Q-Network

Algorithm 1 DQN Algorithm (nature (2015))

Initialize replay memoryD to capacityN , action-value function Q with random weights θ, and
Target function Q̂ with weights θ� � θ
for episode=1, ...,M do

Initialize s1 and preprocessed φ1 � φps1q
for t=1, ...,T do

With probability ε select at randomly
Otherwise select at � argmaxaQpφpstq, a; θq
Execute at in emulator, observe rt
Set st�1 � st and preprocess φt�1 � φpst�1q
Store

�
φt, at, rt, φt�1

�
in D

Sample random minibatch of
�
φj , aj , rj , φj�1

�
from D

Set yj �

#
rj If episode terminates at step j � 1

rj � γmaxu Q̂pφj�1, u; θ�q Otherwise

Perform a gradient descent step on
�
yj �Qpφj , aj ; θq

�2 with respect to the network
parameters θ.

Every C steps reset Q̂ � Q
end for

end for
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Policy Gradient

Policy Gradient

The goal is to learn the policy directly, i.e., learn a stochastic policy πpa|sq.
This function provides the mapping of the state to the probability of choosing each
action.

This is in nature a on-policy algorithm, resulting in an unbiased estimator of the gradient.

With Value based approaches, like DQN:
One cannot solve continues action control problem.
Not possible to learn the optimal policy if it is stochastic, like Scissor/Paper/Stone.

DQN usually converges fast, although very sensitive to the hyper-parameters.

Policy gradient algorithms usually need longer time to converge, though not much dependent
on the hyper-parameter values.
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Policy Gradient

How to Train?

Assume state-action trajectory τ � s0, a0, s1, . . . is available.

Gτ �
°T
t�0 γ

trpst, atq, Gt �
°T
ti�t γ

tirpsti, atiq, and

Upθq � Eτ�pθpτq

�°T
t�0 γ

trpst, atq|πθ

�
where to obtain Upθq we use

pθpτq � pθps0, a0, . . . , sT , aT q (4.1a)

� pps0qΠ
T
t�0πθpat|stqppst�1|st, atq (4.1b)

Apparently, Gpτq is equal to Gp0q. The goal is to get:

θ� � argmax
θ

Eτ�pθpτq

�
Ţ

t�0

γtrpst, atq|πθ

�
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Policy Gradient

How to Train?

To get the maximum value of Upθq, we take gradient with respect to θ:

∇θUpθq � ∇θEτ

Ţ

t�0

γtrpst, atq definition of Upθq (4.2a)

� ∇θ

¸
τ

ppτ ; θqGτ rewrite the expectation (4.2b)

�
¸
τ

∇θppτ ; θqGτ swap sum and gradient (4.2c)

�
¸
τ

ppτ ; θq
∇θppτ ; θq

ppτ ; θq
Gτ both multiply and divide by ppτ ; θq (4.2d)

�
¸
τ

ppτ ; θq∇θ log ppτ ; θqGτ use the fact that ∇θ logpxq �
1

x
∇θx (4.2e)

� Eτ rGτ∇θ log ppτ ; θqs definition of expectation (4.2f)
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Policy Gradient

How to Train?

Now consider log ppτ ; θq.

∇θ log ppτ ; θq � (4.3a)

� ∇θ log
�
ΠT
t�0P pst�1|st, atq.πθpat|stq

�
(4.3b)

� ∇θ

�
Ţ

t�0

logP pst�1|st, atq �
Ţ

t�0

log πθpat|stq

�
(4.3c)

�
Ţ

t�0

∇θ logP pst�1|st, atq �∇θ

Ţ

t�0

log πθpat|stq (4.3d)

� ∇θ

Ţ

t�0

log πθpat|stq (4.3e)

in which (4.3b) uses the definition of ppτ ; θq, and (4.3c) uses the fact that log xy � log x� log y.
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Policy Gradient

How to Train?

Then, by embedding (4.3e) into (4.2f), one can conclude that:

∇θUpθq � Eτ r∇θ log ppτ ; θqGτ s � Eτ

��
Ţ

t�0

∇θ log πθpat|stq

��
Ţ

t�0

γtrtpst, atq

��
(4.4)

Since the distribution of τ � s0, a0, r0, . . . , aT , sT , rT is not known, we cannot obtain the
expectation directly. To address this issue, one can use sampling to obtain an estimation of the
expectation, which here is an unbiased estimator of the gradient. So, given m trajectories of
samples, the gradients can be obtained:
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Policy Gradient

How to Train?

Eτ r∇θ log ppτiqGτ s �
1

m

m̧

i�1

∇θ log ppτiqGpτiq (4.5a)

�
1

m

m̧

i�1

��
Ţ

t�0

∇θ log πθpat|stq

��
Ţ

t�0

γtrtpst, atq

��
(4.5b)
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Policy Gradient

REINFORCE Algorithm
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Policy Gradient

REINFORCE Algorithm

Back to Supply Chain!
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Policy Gradient

Our Goal

Use recent advances in Machine Learning (ML) and Reinforcement Learning (RL) to develop
a new approach for solving combinatorial optimization problems.

Approach these problems very differently from classical heuristics.

Study the and Beer Game Vehicle Routing Problem (VRP) as building blocks.

Extend this infrastructure to more complicated settings.
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Vehicle Routing Problem

.

.

.

.

.

.

Reinforcement Learning for Solving the
Vehicle Routing Problem

.

.

.

.

.

.

.
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Vehicle Routing Problem

Vehicle Routing Problem (VRP)
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Well-known combinatorial optimization problem

Multiple customers with different demands

Find a set of routes, all beginning and ending at a
given node (called the depot)

Objective: Minimize the tour length to satisfy all of
the demands

Solving VRP optimally takes too long, even for moderate
instances

Today’s “hard” VRP instances involve hundreds of nodes
In contrast, hard TSP instances have tens of thousands
of nodes



Vehicle Routing Problem Main Requirements

Main Requirements

Better than existing heuristics and close to optimality

Fast (in a few seconds), comparable to heuristics

Generalize well

No hand-engineering
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Vehicle Routing Problem Main Requirements

How to Satisfy Requirements?

Train a solver (meta-algorithm)

We train a single model for a given instance type.

Once trained, our model can solve any instance of the same type nearly instantaneously.
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Background Deep RL Literature

Deep RL for combinatorial optimization problems

Addressing combinatorial optimization problems:
Learning optimal TSP from optimal solutions; supervised learning and pointer network
[Vinyals et al., 2015]

Bello et al. [2016] use RL and pointer network. They address two main issues:
There are no ground truth labels (i.e., the optimal solution)
Cannot generalize to larger size problems

Solving optimization problems over graphs [Dai et al., 2017]

We have generalized their framework to include VRP
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Background Our Algorithm

Our Algorithm

Static variables:
Locations: both depot and customer nodes

Dynamic variables:
Remaining demand of each node at time t, dti
Remaining load if the vehicle visits node i, i.e.

mint0, lt � dtiu

Reward: tour length

Masking: it acts like constraints
Customers nodes with zero demand
Customers nodes if the remained load is zero
Customers with demands greater than the current vehicle load

Terminate decoding when there is no more unsatisfied demand
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Background Our Algorithm

Attention Mechanism

We used REINFORCE algorithm to train the weights of the network.
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Similar to Bahdanau et al. [2014]

Difference: Take into account the dynamic
elements in the attention

Example: In VRP, demands are only used in
the attention

Interpretation: When attending in different
nodes, consider the dynamic elements s̄1

d̄10

s̄2

d̄20

s̄3

d̄30

s̄4

d̄40

s̄5

d̄50

Attention
layer

at

s̄1

ctπp�|Y0, X0q

s1

d10

s2

d20

s3

d30

s4

d40

s5

d50

Embedding



Background Our Algorithm

Attention Mechanism

s̄i P RD: Embedded static input i.

d̄i P RD: Embedded dynamic input i.

ht P RD: memory state of the recurrent neural network (RNN) cell at decoding step t.

At decode step i,

scorepsi, di, htq � vTa tanh
�
Wars̄

i; d̄i;hts
�

( concat)

aips
i, di, htq �

exppscorepsi, di, htqq°
k

exppscorepsk, dk, htqq

Afshin Oroojlooy (SAS Institute) Selected RL Application for Supply Chain February 2021 38 / 85



Experimental Results Experiment 1: CVRP

Experiment 1: Capacitated VRP

A single capacitated vehicle is responsible for delivering items to multiple customer nodes

It must return to the depot to refill when it runs out

Points are randomly generated in r0, 1s � r0, 1s

Demand of each node is randomly chosen from {1..9}
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Experimental Results Experiment 1: CVRP

Experiment 1: Tour Length Comparison
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Experimental Results Experiment 1: CVRP

Experiment 1: Tour Length Comparison - cnt’d

RL-Greedy 12.2 7.2 99.4 97.2 96.3 97.9 97.9 97.9 41.5

RL-BS(5) 85.8 12.5 99.7 99.0 98.7 99.1 99.1 99.1 54.6

RL-BS(10) 91.9 57.7 99.8 99.4 99.2 99.3 99.3 99.3 60.2

CW-Greedy 0.6 0.3 0.2 0.0 0.0 68.9 68.9 68.9 1.0

CW-Rnd(5,5) 2.8 1.0 0.6 92.2 30.4 84.5 84.5 84.5 3.5

CW-Rnd(10,10) 3.7 1.3 0.8 97.5 68.0 86.8 86.8 86.8 4.7

SW-Basic 2.1 0.9 0.7 31.1 15.5 13.2 0.0 0.0 1.4

SW-Rnd(5) 2.1 0.9 0.7 31.1 15.5 13.2 0.0 0.0 1.4

SW-Rnd(10) 2.1 0.9 0.7 31.1 15.5 13.2 0.0 0.0 1.4

OR-Tools 58.5 45.4 39.8 99.0 96.5 95.3 98.6 98.6 98.6
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RL-Greedy 25.4 20.8 99.9 99.8 99.7 99.5 99.5 99.5 44.4

RL-BS(5) 74.4 35.3 100.0 100.0 99.9 100.0 100.0 100.0 56.6

RL-BS(10) 79.2 61.6 100.0 100.0 100.0 99.8 99.8 99.8 62.2

CW-Greedy 0.1 0.0 0.0 0.0 0.0 65.2 65.2 65.2 0.0

CW-Rnd(5,5) 0.2 0.0 0.0 92.6 32.7 82.0 82.0 82.0 0.7

CW-Rnd(10,10) 0.3 0.1 0.0 97.2 65.8 85.4 85.4 85.4 0.8

SW-Basic 0.5 0.0 0.2 34.8 18.0 14.6 0.0 0.0 0.0

SW-Rnd(5) 0.5 0.0 0.2 34.8 18.0 14.6 0.0 0.0 0.0

SW-Rnd(10) 0.5 0.0 0.2 34.8 18.0 14.6 0.0 0.0 0.0

OR-Tools 55.6 43.4 37.8 100.0 99.3 99.2 100.0 100.0 100.0
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Experimental Results Experiment 1: CVRP

Experiment 1: Solution Time
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Figure: Log of ratio of solution time to the number of customer nodes using different algorithms.

Scalability: 100 � faster when you process in batch
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Experimental Results Experiment 1: CVRP

Experiment 1: How the Decoding Works?
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Experimental Results Other Experiments

Other Experiments

VRPs with Split Demands: Demand of a customer can be satisfied at different routes

Stochastic demand.

See the paper for more details!
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Conclusion Discussion

Conclusion & Discussion

A simple framework: only requires the reward and feasibility checks at each step.

Robust to problem changes

Significantly better than well-known classical heuristics

Competitive with OR-Tools

A fast framework
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Computer Plays Beer Game Using DQN

A Deep Q-Network for the Beer Game:
Reinforcement Learning for Inventory

Optimization
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Computer Plays Beer Game Using DQN Beer Game

Beer Game
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Computer Plays Beer Game Using DQN Beer Game

Supply Chain Point of View

Serial network.

Stochastic demand.

Deterministic lead times.

Total lead time is stochastic due to stockouts upstream.

4 3 2 1

Manufacturer Distributer Warehouse Retailer

Supplier Customer
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Computer Plays Beer Game Using DQN Beer Game

Supply Chain Point of View

Choose order quantities qi to minimize:

z �
Ţ

t�1

4̧

i�1

cihpIL
i
tq
� � cippIL

i
tq
�

where:
i is the agent index,
t � 1, . . . , T is the index of the time periods,
T is the (random) time horizon of the game,
ILit is the inventory level of agent i in period t.
cip and cih are shortage and holding costs for agent i.

For a given known demand distribution, and when cip � 0,@i � 2, 3, 4 base-stock policy
(order to up level) is optimal [Clark and Scarf, 1960].

There is no algorithm for general shortage costs.
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Computer Plays Beer Game Using DQN Beer Game

Current Approaches

Base stock policy [Clark and Scarf, 1960]
Does not provide solution when other players play irrationally.

Anchoring and adjustment formulas [Sterman, 1989, Croson and Donohue, 2006].
Based on state variables.
Aims to model human behavior, not minimize cost.

Meta-heuristic algorithms [Kimbrough et al., 2002].
The agent are able to communicate.
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Computer Plays Beer Game Using DQN Beer Game

Markov Decision Process

Markov Decision Process (MDP).

𝐴𝑔𝑒𝑛𝑡

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝑎𝑡

𝑟𝑡+1

𝑠𝑡+1

𝑟𝑡

𝑠𝑡

𝑡 = 𝑡 + 1

Multi-agent process.

Infinite size of state and action spaces.

Partial observation, POMDP.
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Computer Plays Beer Game Using DQN Beer Game

Problem Category

Beer game is a multi agent cooperative Dec-POMDP.

NEXP Complete [Bernstein et al., 2002].
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Computer Plays Beer Game Using DQN Deep Q-Network Approach

Deep Q-Network

We propose an extension of Deep Q-Network (DQN) algorithm [Mnih et al., 2015] to
efficiently play the beer game.

DQN is a Reinforcement Learning (RL) algorithm to solve general MDPs.

Effective in solving large-state-space problems.
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Computer Plays Beer Game Using DQN Deep Q-Network Approach

Our Approach: Challenges

DQN cannot be applied directly to the beer game.
Applied to solve single agent games and extended to two agents zero-sum games.
Beer game is a cooperative non-zero-sum game.
Applying DQN to beer game results in competitive game.
The obtained policy fails to minimize total cost.

Infinite size of action space.
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Computer Plays Beer Game Using DQN Deep Q-Network Approach

DQN Requirements

Any RL needs a well defined MDP.

Definition of state,

Definition of action,

Reward function.

Afshin Oroojlooy (SAS Institute) Selected RL Application for Supply Chain February 2021 55 / 85



Computer Plays Beer Game Using DQN Deep Q-Network Approach

DQN Algorithm: State Space

Agent i in time step t has observation:

i di

i - 1

RSi

ILi

i+1

OOi

ai

oit �
�
pILij , OO

i
j , AO

i
j , AS

i
j , a

i
jq
�t
j�1

.

ILit: the inventory level
OOit: the on-order items at agent i, i.e., the items that have been ordered from agent
i� 1 but not received yet
AOit: the demand/order received from agent i� 1
ASit : the items received from agent i� 1
ait: the action agent i takes

Capture only the last m periods, i.e.:

sit �
�
pILij , OO

i
j , AO

i
j , AS

i
j , a

i
jq
�t
j�t�m�1

.
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Computer Plays Beer Game Using DQN Deep Q-Network Approach

DQN Algorithm: Action Space and Reward Function

Action Space
Order can be any value in r0,8q
DNN provides the Q-value of all possible actions.
Infinite size is not practical.
Use a d� x rule to select the order quantity.

x P ral, aus, al, au P Z
Reward Function

Observe sit and take action ait.
Need to know rit to measure quality ait.
Use ILit�1 to obtain rit (shortage or holding costs).
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Computer Plays Beer Game Using DQN Deep Q-Network Approach

DQN Algorithm: Feedback Scheme

Game ends: Agents are made aware of the total reward, z.

Provide feedback about how they played.

Update observed reward in all eit � psit, a
i
t, r

i
t, s

i
t�1q,

rit � rit � βifpzq, @t P t1, . . . , T u,

where βi is a regularization coefficient for agent i.

Learn the minimum total cost.
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Computer Plays Beer Game Using DQN Numerical Experiment

Numerical Experiment

Basic Case,
dt0 P Ur0, 2s, Apstq � t�2,�1, 0, 1, 2u.
cp � r2, 0, 0, 0s and ch � r2, 2, 2, 2s.
Two types of co-players:

Rational players, who follow base-stock policy,
Irrational players, who follow Sterman formula.

Three cases from the Literature.

A real world dataset.

Afshin Oroojlooy (SAS Institute) Selected RL Application for Supply Chain February 2021 59 / 85



Computer Plays Beer Game Using DQN Numerical Experiment

Results: Basic Cases, BS co-player, R, W

(a) DQN plays retailer (b) DQN plays warehouse
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Computer Plays Beer Game Using DQN Numerical Experiment

Results: Basic Cases, BS co-player, D, M

(a) DQN plays distributor (b) DQN plays manufacturer
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Computer Plays Beer Game Using DQN Numerical Experiment

Results: DQN Plays with Sterman Formula, R, W

(a) DQN plays retailer (b) DQN plays warehouse
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Computer Plays Beer Game Using DQN Numerical Experiment

Results: DQN Plays with Sterman Formula, D, M

(a) DQN plays distributor (b) DQN plays manufacturer
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Computer Plays Beer Game Using DQN Numerical Experiment

Results: Literature Cases

Three cases from the Literature.

Demand distribution and action space:
dt0 P Ur0, 8s, Apstq � t�8, . . . , 8u [Croson and Donohue, 2006]
dt0 P Np10, 22q, Apstq � t�5, . . . , 5u adapted from [Chen and Samroengraja, 2000]
dt0 P Cp4, 8q, Apstq � t�8, . . . , 8u [Sterman, 1989].

Three types of co-players:
base-stock policy,
Sterman formula,
random policy.
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Computer Plays Beer Game Using DQN Numerical Experiment

Results: Literature Cases

Figure: Results of DQN playing with co-players who follow Sterman policy.

Uniform Normal Classic
DQN Strm-BS Gap (%) DQN Strm-BS Gap (%) DQN Strm-BS Gap (%)

R 6.88 8.99 -23.45 9.98 10.67 -6.44 3.80 13.28 -71.41
W 5.90 9.53 -38.10 7.11 10.03 -29.06 2.85 8.17 -65.08
D 8.35 10.99 -23.98 8.49 13.83 -38.65 3.82 20.07 -80.96
M 12.36 13.90 -11.07 13.86 15.37 -9.82 15.80 19.96 -20.82
Average -24.15 -20.99 -59.57
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Computer Plays Beer Game Using DQN Numerical Experiment

RL vs. BS

Our algorithm works much better than BS when playing with Sterman.

Obtains more than 30% improvement over BS in average.

The importance is that Sterman is more or less like the way that a real human plays.

We anticipate same performance with human playing.
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Computer Plays Beer Game Using DQN Other Experiments

Other Experiments

Two real-world datasets.

A very small dataset (100 observations).

Transfer learning for speed up the training.
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Computer Plays Beer Game Using DQN Other Experiments

Results: New Real World Data-set

Figure: Results of real-world basket dataset.

Category-6 Category-13 Category-22
co-player Agent DQN BS Gap (%) DQN BS Gap (%) DQN BS Gap (%)

BS

R 40.69 39.52 2.96 63.66 58.06 9.65 15.12 14.52 4.10
W 46.29 39.52 17.14 74.31 58.06 27.99 17.08 14.52 17.61
D 45.51 39.52 15.16 59.80 58.06 3.00 15.03 14.52 3.47
M 45.16 39.52 14.26 59.34 58.06 2.21 16.21 14.52 11.63

Average 12.38 10.71 9.20

Strm

R 82.32 79.68 3.31 133.27 153.56 -13.22 21.65 22.54 -3.94
W 148.25 179.69 -17.50 247.99 311.90 -20.49 30.96 37.76 -18.02
D 179.53 205.31 -12.55 312.13 351.61 -11.23 42.38 41.86 1.25
M 218.70 230.87 -5.27 375.98 384.47 -2.21 48.96 49.40 -0.89

Average -8.00 -11.79 -5.40
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Computer Plays Beer Game Using DQN Sensitivity Analysis

Sensitivity Analysis

Check the robustness of the trained model to the changes of cp and ch.

Figure: Results of sensitivity analysis of cost, by perturbing cp and ch. Each sub-figure shows the result of
the mentioned co-players policy when demand distribution is Np10, 2q.
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Computer Plays Beer Game Using DQN Conclusion

Conclusion

Introduced an extension of DQN algorithm to solve the beer game problem.

A feedback scheme is proposed.

A Transfer learning model is proposed to reduce the training time.

Numerical experiments show:
DQN performs well regardless of the way other agents play.
Learns to play close to optimal when others agents play with BS policy.
Provides smaller cost than BS policy when plays with irrational players.
Transfer learning makes the training �15 times faster.
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Other Application

Other Application
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Other Applications Success Stories

Application in Marketing
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Consider long-term interactions
with customers

20-30% higher revenue compared
to greedy methods
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Other Applications Success Stories

Application in Traffic Signal Control Problem

Non linear mix-integer programming model.

Not robust to the changes of the traffic fellow.

One single model which works for any intersection with any traffic.
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Other Applications Success Stories

Application in Air Conditioning

Better than periodic-review models.

Considering long-term objectives results in smoother policies, e.g. less on-off

Afshin Oroojlooy (SAS Institute) Selected RL Application for Supply Chain February 2021 74 / 85



Other Applications Success Stories

Application in Internet of Things

All devices are connected in a connected distributed network.

The goal is to minimize the long-term maintenance cost or maximize the availability.

Applications in gas stations, production lines, or any system with many similar devices in a
connected network.
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Other Applications Success Stories

Other Applications

Scheduling (Jobshop, Flowshop)

Automatic Maintenance Agent

Max cut and graph coloring problem

Knapsack Problem

...
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Other Algorithms

Other Algorithms

Discrete action space:
Double DQN, Dueling DQN, Double Dueling DQN,
Apex-DQN,
IMPALA,

Both continues and discrete action spaces
Actor-Critic
Asynchronous Advantage Actor-critic (A3C)
Synchronous Advantage Actor-critic (A2C)
Trust Region Policy Optimization (TRPO)
Proximal Policy Optimization (PPO)
Soft Actor-Critic (SAC)

Only continues control
Deep Deterministic Policy Gradient (DDPG)
Twin Delayed DDPG (TD3)
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Extensions

Extensions

Batch-RL
No environment,
No exploration.

Partially observed MDP (POMDP)

Multi-Agent RL
Several Agents attend in the system,
Non-stationary environment!,
Communication, bandwidth limit,
Learn to communicate.
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Where to Publish!?

Top Conferences

Not much of journals in this field.

Mostly conference, quite competitive.

NeurIPS, ICML, ICLR, AAAI, KDD,
Acceptance rate about 10-20%,
NeurIPS 2020 had around 12000 submissions,
You get at least 3 reviews,
Usually you 10 days to answer the questions and submit back a single page answers,
Double blind.
See the list at All-Ranking and CS-Ranking
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Open Source Libraries

Open Source Python Packages
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Open Source Libraries

Open Source Python Packages for RL

Environment
OpenAI gym environment.

Algorithm
Ray (rise lab, University of California, Berkeley)
Horizon (Facebook)
TF-Agents(Google)
Acme (Deep Mind, Google)
Tensorforce
KerasRL
...
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Open Source Libraries

Link to our Paper and Code

Reinforcement learning for solving the vehicle routing problem, NIPS 2018
github code: https://github.com/OptMLGroup/VRP-RL

A Deep Q-Network for the Beer Game ... (MSOM 2020) https://arxiv.org/abs/1708.05924
github code: https://github.com/OptMLGroup/DeepBeerInventory-RL
Opex Analytics Beer Game

AttendLight: Universal Attention-Based Reinforcement Learning Model for Traffic Signal
Control, NeurIPS 2020

Online Reinforcement Learning with Applications in Customer Journey Optimization, NeurIPS
RL Symposium 2017
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